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LFOREWORD

The conditions for transition from primarily conductive to convective heat
transfer in a simple porous material have been analyzed, assuming the validity
of Darcy's law. A stability criterion, which may apply in the Deflagration-to-
Detonation Transition (DDT) of porous explosives and propellants, has been
derived and discussed. This work should be of interest to those concerned with
propellant safety and DDT in porous reactive materials.

* Funding for this work was provided by the NAVSEASYSCOM Explosives 6.2 Block
Program, Task Number SF33-337-691/lRlOBB403.
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I. INTRODUCTION

In 1948 Lapwoodl analyzed the heat flow in an infinite, horizontal,
I. fluid-saturated, homogeneous, porous slab. By adopting the mathematical

technique used by Lord Rayleigh in 19162 in an analogous problem (the
stability of a liquid layer heated from below), Lapwood showed that the flow is
not always stable, but that there exists the same stability condition that
Rayleigh had found in the case of the liquid layer, The stability condition
states that, if the temperature gradient exceeds a certain critical value, one
has the onset of iustabilities associated with fluid convection.

This analysis was conducted assuming zero viscosity, which drastically
* tsimplifies the problem. Only recently, Kassoy and Zebibi,4, 5 have

investigated the same problem by taking into account the viscosity and using the
more realistic configuration of a confine' medium.

The onset of instabilities corresponds to a transition from a conductive to
m convective heat transfer which manifests itself in a dramatic change in the

thermal conductivity characteristics of the porous material. As early as 1933,
Kannuluik6 showed that the thermal conductivity of powders shows a sharp
increase when they are permeated by a gas. For example, for evacuated powders
such as carborundum, the thermal conductivity is typically of the order of 0.1 x
10- 5 cali/cm-sec-°C. However, when carborundum powder is filled with
hydrogen, whose conductivity is 38.0 x 10- 5 , in the same units, the
conductivity of the powder increases to 300 x 10- 5 cal/cm-sec-OC, 3 x 103
times the thermal conductivity of the evacuated powder!

ILapwood, E. R., "Convection of a Fluid in a Porous Medium," Proc. Camb. Phil.
Soc.,44, 508-521, 1948.

4 2Lord Rayleigh, "On Convection Currents in a Horizontal Layer of Fluid, When
the Higher Temperature is on the Under Side," Phil. Mag.,6, 32, 529-546, 1916.

3Kassoy, D.R. and Zebib, A., "Variable Viscosity Effects on the Onset of
Convection in Porous Media," Phys. of Fluids, 12, 18, 1649-1651, 1975.

4 4Zebib, A. and Kassoy, D. R., "Onset of Natural Convection in a Box of Water-
Saturated Porous Media with Large Temperature Variation," Phys. of Fluids, 20
(1), 4-9, 1977

5Zebib, A., "Onset of Natural Convection in a Cylinder of Water-Saturated
Porous Media," Phys. Fluids, 21 (4), 619-700 , 137S.

6Kannuluik, W. G., "Conduction of Heat in Powders," Proc. Poy. Soc., A141,
144-158, 1933.
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This phenomenon can be explained only by assuming that a convective process
is established and that the heat is transferred to the grains of powder by
collision with the fluid molecules.

The effect of the gas imbedded in a porous medium is illustrated in Figure
1, which also shows the importance of grain sizes and density for carborundum
powder (See Table I for density and particle size parameters for carborundum).
The effect of different gases imbedded in the powder (hydrogen and air) is also
shown. Figure 1 shows also that the conductivities increase with pressure,
although they tend to reach a plateau at pressures of the order of one
atmosphere, so that for high pressures one can assume that the conductivities
become pressure-independent. This seems reasonable if one considers the data
shown on curves of conductivity vs pressure in Figure 2 for two typical
gases--namely, air and hydrogen.

These results appear to play an important role in the deflagration-to-
detonation transition in high explosives because, as is well known, this
transition is preceded by another transition, that from conductive to convective
burning. An analysis to determine the conditions necessary for this rlansition
will now be considered.

[ •II. STABILITY ANALYSIS

The xy-plane contains a horizontal slab of a fluid-saturated homogenous,
porous material with thickness h, so that 0 < z < h.

In absence of viscosity, the Navier-Stokes equation reduces to the Euler
equation:

PDV =_Vp F (1)

Dt

with

D + (2)

Dt at

p, the density, V, the macroscopic velocity of the element of fluid at the
point (x,y,z), whose components are u,v, and w, with p, the pressure, and F, the
system of forces acting on the element of fluid. This force P consists of two
components, the weight W = (0,0,pg), with g, the acceleration of gravity, and
a resistance component for the porous material given by Darcy's law, so that one

0 has for the total force:

-. -0,(3
F = .g V + Pgk (3)

K

6
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K being the permeability and I, the unit vector in the direction of the z-axis.

The gravitational component ogi: although negligible in comparison to the
Darcy term (which, in the case of low permeability materials, such as
propellants, is large) has been included for the sake of completeness.

To the fluidynamic equation, one must add the heat conduction equation:

2

Dt

where 0 is the temperature and K the thermal diffusivity. To Equations 1-4,
one must also add two other equations, a continuity equation:

I Dp - (5)
p Dt

and an equation for thermal expansion:

P = PC (1-a e) (6)

where 0 c is the value of P at e = 0, and a is the bulk thermal
expansion coefficient.

Equations (1)-(6) can be linearized by assuming that velocity and the
departures of temperature, density, and pressure from the equilibrium state are
small so that second order terms can be assumed negligible.

If the variations in density as well as the (V term are considered

negligible, one has

. - p- -~&V - ogle, (7)
at K

2

7 2 a e,(8)
Dt

o 0(9)

7
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The subscript "0" labels the parameters in the equilibrium state. The system isassumed perturbed from the equilibrium state and the perturbations are, as
usual, considered small. We have:

e = 6o + = - 13z + e , (ii)

P= Po + P- pogz + p , (12)

O= Pc (l-aeo) , (13)

P = 
Pc l-e(0+e0 ) P 0o Pco , (14)

where Q is the temperature gradient.

Since the term V . VO is negligible, equation (8) reads

__ 2- Bw + _8 = 'v e. 
(15)

at

By taking the divergence of (7), since (10) holds, one has

2
2 Ocg . = 0. (16)az

The third component of (7) gives

o a-t w at - P- g w - 0og + gPcae , (17)

and with (15) and its time derivative, w can be eliminated, and one has

- + cga e 1. (L + 2) 6 + Pog (18)Dz t -

By taking the Laplacian of (18) and the z derivative of (16), the pressure also
can be eliminated, and one readily has the fourth order partial differential
equation for the temperature 0,

8
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L+) ( r) 7 0e gaa 7 0 *(19)

2
where V1 , is the partial Laplacian, namely

2 2 2

a +_ (20)
1 a x2  ay2

Let us now consider a simple case, with the following boundary conditions:

9 0 at z = 0 and z = h (21)

8 0 at z = 0 and z = h (22)
9z2

The search for a solution of Equation (19) of the form

9 = R(x,y,t) Z(z) (23)

imposes on z, through the boundary conditions (21) and (22), the following
conditions,

Z(O) = Z(h) = 0 , (24)

z"(0) = z"(h) = 0 , (25)

so that by taking

Z(z) = A sin ,z (26)

one has

sin wh = 0 i.e., uh = nw. (27)

Now we try a solution of the form

9
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Vt
e = Asin~xsiniysin nM z e . (28)

h

By substitution into Equation (19), one has

+ v +E (a + n it) a + ni ga a (29)K h2

where

a 2  h 2 (1 2 + x 2 )

a, =& , (2

1 K

2 2 2
a2 = L (a + n 2 ) , (32)

h
2

a = gaa a (33)
3 a2 + n2r2

and Equation 29 reads

(v + al) (v + a2 ) a3  (34)

which admits the following roots

2
1= - /2 (a1 + a2 ) + 1/2 l(a-a2 ) + 4a3 (35)

When v is complex, its real part, -1/2(a I + a2), is always negative
and the perturbation decays with time, since al and a2 are positive. If
we require the perturbation to persist then the roots must be real and positive,
i.e.,

10
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2
(al-a 2 ) + 4a3 > 0 , (36)

and

-( I + a2) + : - a2) + 4(3 >0.• (37)

If a > 0, (35) is certainly satisfied, and the roots are real.

The value of B = 8 cr which results in a value of zero for v is the one

for which, when B < Bcr, the perturbation dies down, and when 1 > Bcr,
q it increases exponentially. This value is found by solving the equation:

2 2

(a- a2) + 403 = (al + a2) (38)

(a + a2) 2 -(a a .)2

a = 1 (39)
3 4

13 laC2 '(40)

which gives

2 n22)2

1C = (a +n (41)
cr Kah 2  a2

The minimal value of kcr = kcr is obtained, since n is an integer,

2 2
for n = I and for a value of a, such that the function a + 7 is minimum.

a
This minimum is readily recognized for a2 =2, so that

2

Bj 4i K (42)
cr Kah 2

and for

1i
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2
<_41__ (43)

Ke h2

the flow is stable and the perturbation rapidly dies exponentially. For

13 > 47 2 c (44)
Krzh2

the perturbation increases exponentially and the flow is unstable. This
represents the condition for the transition from conductive to convective heatq transfer in a fluid-filled porous material in the hypothesis that Darcy's law
holds.

IIT. THE ROLE OF THE STABILITY CONDITION IN THE BURNING OF POROUS MATERIALS AND
PROPELLANTS

The stability condition discussed in the previous pages appears to be of
particular interest in the study of the combustion of porous material and
propellants. It involves all the typical parameters one expects to encounter in
the process; namely, the temperature gradient, the thermal diffusivity, the
thermal expansion coefficient of the fluid filling the pores, the permeability
of the porous material, and the thickness of the material through which the
thermal gradient is established.

The stability condition states that when the temperature gradient R3 is such
that

2
B > 41T Kc

Kaih 2

the heat transfer dramatically changes character from conductive to primarily
convective. Analogous criteria are expected to apply to the burning of modern
solid propellants with a high content of solid materials. In this case, during
combustion, ahead of the flame, there exists a layer of propellant-heated,
although not yet burning. Although the temperature is initially insufficient to
ignite the propellant, it increases with time and can reach a value at which the
solvent and the binder begin to evaporate or decompose so that a porous layer
whose thickness varies with time, begins to form ahead of the flame. The
previous considerations then apply. In the case of small propellant grains, the
total burning time is probably too short for such a phenomenon to occur. The
advent of longer range solid-propellant requires longer burning propellant
grain. so that the process described above could develop.

12
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* IV. AN ESTIMATE OF THE THERMAL GRADIENT ESTABLISHED IN A PROPELLANT GRAIN

The problem of heat transfer in thermal conductors when the heat sources are
moving, is a problem of foremost importance in reveral fields, such as metal
welding, and many studies have been made on the subject. 7 ,8 However, since,

* from a mathematical point of view, the rigorous treatment is of great
difficulty, this analysis has been confined to the quasi-stationary regime.
This regime is experimentally verified 9 and is seen in the fact that, if the
sample is long enough, the temperature ahead of the moving source rapidly
approaches a constant value. In different terms, an observer who is moving with
the source does not detect, after a certain time, any change in the temperature
distribution in the sample ahead of the source. While the quasi-stationary
solution is often of practical utility, the transient regime is important in
many cases.

For the sake of simplicity, we will make an assumption, which will be
removed in a successive study, that the sample is non-reactive. The burning
process is then schematized by substituting for the flame front a heat source
which moves along the x-axis with a constant speed v and a constant heat rate
q. The evaluation of the temperature distribution T(x,y,z,t) will be determined
by the heat conduction equation:

a + a'T + = 2X T (45)

ax2  ay2  at 2  at

where

21 = cp , (46)

k

c being the specific heat of the solid material, p its density and k the
thermal conductivity coefficient of the material. The transformation

= x - vt, (47)

brings Equation (45) into the following form:

/Campolattaro, A. A., Numerical Modelling of the Burning of Highly Exothermic
Mixtures, NSWC report 1977 (To be published).

8Rosenthal, D., The Theory of Moving Sources of Heat and Its Applications to
Metal Treatment, Trans. Amer, Soc. Mech Engrs.,68 849-866, 1946, and included
bibliography.

9Bornefeld, H., Temperature Measurement in Fusion Welding, Technische
Zentralblatt Fur Praktische Metal Bearbeitung Vol. 43. pp. 14-18, 1933.

13
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2 T + 2Xv 2A _ = 0. (48)a at

where the Laplacian is the Eulerian one, i.e. the operator Laplacian involving

the coordinates system moving with the heat source, i.e.

2 2 2 2

+ =+a a .a (49)
a 2  ay 2  9z2

By puttingU
T =T o + e -  (,y,z,t) (50)

where To is the initial temperature, Equation (48) becomes

2
V 2 + 2(Xv-a) 2__ _ 2__ + a(c-2Av) 0=0. (51)

at

Cand by taking

= Xv, (52)

the termaL can be eliminated and one has

2 2

V 2 - 2A (X -Ov) 2=0. (53)
at

By putting

2
-Av t (54)

=e 2 4',

Equation (53) reduces further to the ordinary heat conduction equation, i.e.

14
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2
V ' - 2X a'.#  = 0 , (55)

at

The solution of (48) which satisfies the boundary condition that at the flame
Q =0), the temperature remains constant and equal to Tf, for the
one-dimensional case, will be

~2
-Xv X 2

T - To = e e ( 't) (56)

Iso that the initial condition for * is

Q ,t) = 0 for t = 0, (57)

I
and at the boundary,

2

Tf - To = e *(0,t) , (58)

Equation (55) must be integrated with the initial and boundary conditions given
by

(,t) = 0 for t = 0, (59)

2

2
= (Tf - TO ) e for = 0. (60)

This integral is readily found1 0

IUCarslaw, H. S.,and Jaeger, J. C., Conduction of Heat in Solids, Oxford at the
Clarendon Press, II Ed.,1959, page 63.

15
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2t
Xvt

xv 2
e e (T- TO )=

2 2
Xv t' - X U

t 2 2(-77
2 (Tf T e e dt (61)

o2 f (t - t')3/2

By putting

t-r' , (62)

Equation (61) reads

2 2

T-T - -. (T - T) e f1-3/2 e 2 e 2v dij (63)
o0 2, f 0 of

or

2 2 2
t-x +v 1

T-T = __(T - T )& ex / e 2d (64)o 2T, ff
o 2i f 0

which gives the temperature at any time t and at a distance from the
propagating flame.

An easy check of this solution can be made by set'ing v=0 in Equation (64)
to determine whether or not it reduces to the solution for a semi-infinite slab
with the boundary at =O kept at constant temperature Tf and the iryitial
temperature constant and equal to To, which is a classical problem.

For v=0, Equation (64) reads:

Carslaw, H. S., and laeger, '. C., Conduction of Heat in Solids.

16
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2

t-- 3 / 2  2 
(65)

T -T o = (Tf -To)& e du (5

which, by setting

x =4 iii. , (66)

readily gives:

T T = (Tf - TO ) erfc C (67)

which is indeed the solution given by Carslaw and Jaeger.
2

I
It is also useful to evaluate the steady-state solution of Equation (48).

Neglecting the time derivative in Equation (48), we have as the steady-state
equation,

' 2

7 T + 2Xv 3T = 0. (68)

By putting

T = To + e - Xv  'D. (69)

Equation (65) becomes

V2p - (Xv) 2 D = 0, (70)

which reduces to, in the one-dimensional case:

2
d - (Xv) 2 D = 0, (71)
d 2

122

12 Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, p. 60.

17
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whose general integral is

I 0 = Aek vE + Be- vE , (72)
with A and B as arbitrary constants of integration.

The boundary conditions for T which are of physical interest are:

T = Tf for E = 0, and lim T = To, (73)

and, from (69) and (72), one readily has

U
T = To + (Tf - TO ) e-

2VXE. (74)

* If Tr is the temperature at which some chemical reaction or phase change
occurrs within one or more of the components of a mixture undergoing combustion,

6 then the distance &r, ahead of the flame, at which the burning material has
reached temperature Tr is readily evaluated from (74), and one has

S"Tf To
r I ln f 0 (75)

Xv Tr. TO

This distance is only of interest if we have

Er > vr (76)

where T is the reaction time at the temperature Tr- Equation (76) combined
with Equation (75) gives the following relation among the physical parameters of

"* the system for a reaction or phase change to occur:

T T
Xv2T < In f - o (77)

Tr - To

Equation (64) may be integrated numerically to evaluate the temperature at
any time T at a distance from the propagating flame for materials whose
burn velocity (v), flame temperature (Tf) and thermal diffusivity are known.
These parameters are summarized fcr three materials in Table 2. Equation (64)

* was integrated for each material at various distances (Q) ahead of the flame
as a function of time. The results are shown in Figures 3(a), 3(b) and 3(c).
The time required to establish a "steady-state" temperature varies directly with
the distance ahead of the flame (E) and the thermal diffusivity, as expected.

i8
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Calculations were also made to determine "steady-state" temperature rise as a
function of distance ahead of the flame front by integrating at each of 10
distances numerically until convergence is reached. The results of these
calculations for materials listed in Table I are shown in Figures 4(a), 4(b),
and 4(c). The calculated temperature as t-0, though not shown in these
figures, does indeed approach the flame temperature. From these calculations,
an estimate can be made of the thermal gradient existing in porous materials
burning conductively to assess when the transition conditions for the onset of
convective flow are reached. Measurements of the permeability (K) of these
propellants as well as the thermal expansion coefficient of their combustion
products (a) must be made in order to check the validity of the model.

V. CONCLUSIONS

A condition has been found which governs the transition from conductive to
convective burning in nonreactive analogs of porous propellants and explosives.
The relevant physical parameters in the transition are, as one would expect, the
temperature gradient in the material, its thermal diffusivity, and the thermal
expansion coeff efnefof its combustion gases. It has been previously
well-established,'' that the conductive-convective flow transition precedes
that from deflagration-to-detonation. A mechanism has been proposed whereby an
initially non-porous propellant grain may become porous through conductive
heating ahead of the flame and subsequent phase change or thermal degradation of
propellant ingredients. The establishment of a sufficiently high thermal
gradient throughout this newly-formed porous layer, whose thickness increases
with time, then defines the condition for the onset of primarily-convective flow.

Experimental work will be done in the near future to obtain the physical
parameters necessary to verify the validity of the condition for
conductive-convective flow transition in porous materials and its role as a
precursor to DDT.

1 3Griffith, N., and Gloocock, J. M., "The Burning to Detonation of Solid
Explosives," J. Chem. Soc.,4154, 1960.

14Bernecker, R. R., and Price, D., "Studies in the Transition from
Deflagration To Detonation in Granular Explosives-I Experimental Arrangement
and Behavior of Explosives which Fail. To Exhibit Detonation," Combust. Flame,
22, 111-i1l, 1974.
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FIGURE 1. THERMAL CONDUCTIVITY (k) CURVES FOR CARBORUNDUM
WITH H2 , SHOWN IN DOTTED LINE, AND FILLED WITH AIR,
SHOWN IN SOLID LINE, VS PRESSURE (REF. 6)
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FIGURE 3b. CALCULATED TEMPERATURE RISE AS A FUNCTION OF TIME AT VARIOUS
DISTANCES AHEAD OF THE FLAME FRONT FOR TP-H-1148 PROPELLANT
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FIGURE 3c. CALCULATED TEMPERATURE RISE AS A FUNCTION OF TIME AT VARIOUS
DISTANCES AHEAD OF THE FLAME FRONT FOR PYRONOL PYROTECHNIC
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C
TABLE 1. DENSITY OF SOLID MATERIALS (p) AS WELL AS POWDERED

MATERIALS (po) FOR DIFFERENT TYPES OF CARBORUNDUM.
THE AVERAGE LINEAR DIMENSION (I) OF THE POWDERED MATERIAL
IS ALSO SHOWN. (REF. 6)

CARBORUNDUM

NO. 40 NO. 90 NO. 280 NO. 600

q p, g cm"3  1 •80 1 •89 1 •84 1 • 54

pa, g cm"3  3" 20 3 • 20 3"20 3"20

1, cm 0 055 0- 0194 03 0061 0- 0027

TABLE 2. SELECTED PROPERTIES OF REACTIVE MATERIALS USED
FOR CALCULATION

BURN FLAME THERMAL
MATERIAL VELOCITY TEMPERATURE DIFFUSIVITY

(cm/sec) (cm2 /sec)

EJC PROPELLANT 1.372 3913.5 375.3

TP-H-1148 PROPELLANT 1.067 3429.6 229.6

PYRONOL PYROTECHNIC 41.58 2473.0 2.58
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